Coulomb GAN

نویسندگان

  • Thomas Unterthiner
  • Bernhard Nessler
  • Calvin Seward
  • Gunter Klambauer
  • Martin Heusel
  • Hubert Ramsauer
  • Sepp Hochreiter
چکیده

Generative adversarial networks (GANs) evolved into one of the most successful unsupervised techniques for generating realistic images. Even though it has recently been shown that GAN training converges, GAN models often end up in local Nash equilibria that are associated with mode collapse or otherwise fail to model the target distribution. We introduce Coulomb GANs, which pose the GAN learning problem as a potential field of charged particles, where generated samples are attracted to training set samples but repel each other. The discriminator learns a potential field while the generator decreases the energy by moving its samples along the vector (force) field determined by the gradient of the potential field. Through decreasing the energy, the GAN model learns to generate samples according to the whole target distribution and does not only cover some of its modes. We prove that Coulomb GANs possess only one Nash equilibrium which is optimal in the sense that the model distribution equals the target distribution. We show the efficacy of Coulomb GANs on LSUN bedrooms, CelebA faces, CIFAR-10 and the Google Billion Word text generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coulomb Gans: Provably Optimal Nash Equi-

Generative adversarial networks (GANs) evolved into one of the most successful unsupervised techniques for generating realistic images. Even though it has recently been shown that GAN training converges, GAN models often end up in local Nash equilibria that are associated with mode collapse or otherwise fail to model the target distribution. We introduce Coulomb GANs, which pose the GAN learnin...

متن کامل

Influence of the ratio of gate length to drain-to-source distance on the electron mobility in AlGaN/AlN/GaN heterostructure field-effect transistors

Using measured capacitance-voltage curves with different gate lengths and current-voltage characteristics at low drain-to-source voltage for the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) of different drain-to-source distances, we found that the dominant scattering mechanism in AlGaN/AlN/GaN HFETs is determined by the ratio of gate length to drain-to-source distance. For dev...

متن کامل

A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

Articles you may be interested in Effect of n-p-n heterostructures on interface recombination and semiconductor laser cooling Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers Appl.

متن کامل

Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors

Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, S...

متن کامل

Molecular dynamics simulations of atomic assembly in the process of GaN film growth

Molecular dynamics simulations using a Coulomb–Buckingham potential have been used to investigate the process of wurtzite GaN films growth, including the appearance of films in early stage, regulation of growth, structure of the surface and the dynamic features. The simulations show that the N atoms and Ga atoms are absorbed on the lattice of substrate and take on a distinct sandwich structure....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017